(12) МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С **ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (РСТ)**

(19) Всемирная Организация Интеллектуальной Собственности Международное бюро

(43) Дата международной публикации 30 октября 2008 (30.10.2008)

- (10) Номер международной публикации WO 2008/130277 A1
- (51) Международная патентная классификация: G02B 27/22 (2006.01) H04N 15/00 (2006.01)
- (21) Номер международной заявки: PCT/RU2008/000233
- (22) Дата международной подачи: 15 апреля 2008 (15.04.2008)
- (25) Язык подачи: Русский
- (26) Язык публикации: Русский
- (30) Данные о приоритете: 2007114915 20 апреля 2007 (20.04.2007) RU
- (71) Заявитель и
- (72) Изобретатель: ЕЖОВ Василий Александрович (EZHOV, Vasily Alexandrovich) [RU/RU]; ул. Новые Черемушки, д. 32а, корп.4, кв.80, Москва, 117461, Moscow (RU).
- (74) Агент: ОБЩЕСТВО С ОГРАНИЧЕННОЙ **ОТВЕТСТВЕННОСТЬЮ** "СОЮЗПАТЕНТ" (OBSCHESTVO S OGRANICHENNOI OTVET-STVENNOSTJU "SOJUZPATENT"); ул. Ильинка, д. 5/2, Москва, 103735, Moscow (RU).

- (81) Указанные государства (если не указано иначе, для каждого вида национальной охраны): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Указанные государства (если не указано иначе, для каждого вида региональной охраны): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), евразийский (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), европейский патент (АТ, ВЕ, ВG, СН, СҮ, СZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Опубликована:

с отчётом о международном поиске

(54) Title: METHOD FOR WATCHING STEREOIMAGES WITH A FULL RESOLUTION AT EACH ANGLE AND A DEVICE FOR CARRYING OUT SAID METHOD

(54) Название изобретения: СПОСОБ НАБЛЮДЕНИЯ СТЕРЕОИЗОБРАЖЕНИЙ С ПОЛНЫМ РАЗРЕШЕНИЕМ ДЛЯ КАЖДОГО РАКУРСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Abstract: The invention relates to stereoscopic video engineering and can be used for developing stereoscopic TV-sets and monitors making it possible to watch stereoimages with glasses and without them and also to watch monoscopic images. Said possibilities are provided by that the inventive method and device use elliptical light flux polarisation shapers with space-periodic polarisation modulation, the parameters of which are determined by arc-trigonometric functions such as arctg, arcctg, arccs, arcsin (or by a combination thereof) of algebraic relations between squared signal amplitudes of image time scanning, thereby making it possible to select the image of left and right view angles in left and right view areas with the aid of a space periodic polarisation selector.

(57) Реферат: Изобретение относится к стереоскопической видеотехнике и может быть использовано для создания стереоскопических телевизоров и мониторов с возможностью наблюдения стереоизображения как в очках, так и без очков с сохранением возможности наблюдения моноскопических изображений. Такие возможности обеспечиваются за счет того, что в способе и устройстве используются формирователи эллиптической поляризации светового потока с пространственно- периодической поляризационной модуляцией, параметры которой определяются обратными тригонометрическими функциями вида arctg, arcctg, arccos, arcsin (либо их комбинаций) от алгебраических соотношений между квадратами амплитуд сигналов временной развертки изображений, что позволяет с помощью пространственнопериодического поляризационного селектора выделить изображения левого и правого ракурсов в левой и правой зонах наблюдения.

СПОСОБ НАБЛЮДЕНИЯ СТЕРЕОИЗОБРАЖЕНИЙ С ПОЛНЫМ РАЗРЕШЕНИЕМ ДЛЯ КАЖДОГО РАКУРСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Область техники

Изобретение относится к технике наблюдения объемных изображений, точнее, к стереоскопической видеотехнике, и может быть использовано для создания стереоскопических телевизоров и компьютерных мониторов с возможностью наблюдения стереоизображения как без очков, так и с помощью пассивных (некоммутируемых) стереоочков с сохранением возможности наблюдения моноскопических изображений.

Предшествующий уровень техники

Из публикации Surman Ph. et al. The construction and performance of a multiviewer 3-D television display. - Journal of the SID, 2005, v.13. № 4, p. 329 известен способ безочкового наблюдения стереоизображений, заключающийся в том, что в группах нечетных и четных столбцов матрично-адресуемого оптического модулятора или генератора формируют световой поток с модулированной интенсивностью света, прямо пропорциональной величинам B_L^{mn} B_R^{mn} интегральной яркости соответственно левого L и правого R ракурсов стереоизображения, с помощью пространственно-периодической модуляции длины оптического пути света, создаваемой растром цилиндрических линз, отклоняют парциальные световые потоки, соответствующие группам нечетных и четных столбцов поперечного сечения, в левую и правую зоны наблюдения, где m = 1, 2, ..., M, n = 1, 2, ..., N, а M и N – число строк и столбцов в матричном оптическом модуляторе (генераторе).

Достоинством известного способа является возможность просмотра стереоизображения без применения очков, что обеспечивает комфорт для наблюдателя. Основным недостатком известного способа является сниженное в 2 раза, до величины $M(\frac{N}{S})$, пространственного разрешение в каждом из ракурсов относительно полного

разрешения $M \times N$ оптического модулятора. При этом снижение числа элементов в воспроизводимом изображении происходит только вдоль одной из координат изображения, поскольку изображения каждого ракурса отводится N_2 столбцов при строк в воспроизводимом изображении, что создает неизменном числе М проблему соблюдения требуемого соотношения сторон для дополнительно изображения. Например, данным способом невозможно организовать с помощью ЖК дисплея с разрешением $N \times M = 720 \times 576$ элементов (для систем PAL, SECAM) воспроизведение стереоизображения с тем разрешением 720×576 элементов, поскольку при этом разрешение упадет вдвое до $(N/2)M = 360 \times 576$ для каждого ракурса, но также невозможно сохранить в каждом ракурсе требуемое исходное соотношение 4:3 сторон изображения, поскольку для изображения с 360×576 элементами это соотношение равно 2:3. Если же специально изготавливать матрично-адресуемые оптические модуляторы с нестандартным соотношением сторон 8:3 для параллельного воспроизведения двух ракурсов с соотношением 4:3 данным способом, то такой путь приведет к проблеме воспроизведения стандартных моноскопических (одноракурсных) изображений из-за несоблюдения уже для них требуемого соотношения 4:3 сторон. Эта проблема в совокупностью с невозможностью электрического отключения действия растра обычных цилиндрических линз ведет к практической невозможности при использовании известного способа обеспечить совместимость с моноскопическим отображением, если к тому же учесть, что практически невозможно с целью просмотра моноскопического изображения временно удалять линзовый растр механическим путем (выполнять его съемным), поскольку каждый раз после такого удаления потребовалась бы выполнить точную юстировку пространственного положения линзового растра.

Из описания к патенту RU 2306680 (далее – [2]) известен способ наблюдения стереоизображений с полным разрешением для каждого ракурса, заключающийся в том, что формируют световой поток с комплексной модуляцией амплитуды, за счет которой в mn-ом элементе поперечного сечения светового потока совместно представлены интегральные яркости B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого L и правого R ракурсов трехмерной сцены, при этом параметры кодирующей эллиптической модуляции поляризации света заданы в виде обратных тригонометрических функций от алгебраических соотношений между B_L^{mn} и B_R^{mn} , где m = 1, 2, ..., M, n = 1, 2, ..., N, а

3

 $M \times N$ – число строк и столбцов в поляризационно-кодирующем оптическом модуляторе, и с помощью поляризационных фильтров, выполненных в форме пассивных стереоочков, сепарируют парциальные световые потоки изображений левого и правого ракурсов, направляя их в левую и правую зоны наблюдения,

В документе [2] также описано устройство для наблюдения многоракурсных изображений с удвоенным разрешением в каждом ракурсе и возможностью моноскопического отображения, содержащее источник многоракурсного видеосигнала, электронный функциональный блок и расположенные последовательно на одной оптической оси электрически управляемый матрично-адресуемый поляризационнокодирующий оптический модулятор и поляризационный селектор, выполненный в виде пассивных стереоочков, два окна которых содержат два поляризационных фильтра со взаимно ортогональными состояниями поляризации, при этом для mn-го элемента передаточная поляризационно-кодирующего оптического модулятора его характеристика определяется обратными тригонометрическими функциями ОТ отношения линейных комбинаций $(S_L^{mn})^2$ и $(S_R^{mn})^2$, где S_L^{mn} и S_R^{mn} – сигналы, квадраты амплитуд которых соответствуют величинам B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого и правого ракурсов, причем выход источника стереовидеосигнала подключен к электрическим входам поляризационно-кодирующего оптического модулятора и электронного функционального блока, выход которого подключен к входу поляризационного селектора, где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \times N$ – число строк и столбцов в поляризационно-кодирующем оптическом модуляторе.

Достоинством известных способа и устройства является использование полного пространственного разрешения $M \times N$ поляризационно-кодирующего оптического модулятора (генератора) для каждого из двух ракурсов стереоизображения, предъявляемых наблюдателю, несмотря на то, что оба ракурса воспроизводятся совместно (одновременно) на одном и том же экране. При этом для перехода к наблюдению моноскопического изображения достаточно снять стереоочки и переключить устройство в режим формирования моноскопического изображения.

Использование стереоочков ведет к большой свободе перемещения наблюдателя (вследствие того, что зоны наблюдения, определяемые положениями окон стереоочков в этом случае, автоматически перемещаются вместе с наблюдателем), однако обязательное наличие стереоочков снижает комфортность наблюдения стереоизображения в известных способе и устройстве.

4

Задачей изобретения является расширение функциональных возможностей способа и устройства за счет реализации безочкового наблюдения стереоизображения.

Раскрытие изобретения

Поставленная задача решается тем, что в способе, в котором с помощью матрично-адресуемого поляризационно-кодирующего оптического модулятора или генератора формируют световой поток с комплексной модуляцией амплитуды, за счет которой в *mn*-ом элементе поперечного сечения светового потока совместно представлены интегральные яркости B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого L и правого R ракурсов трехмерной сцены, при этом параметры кодирующей обратных поляризации света заданы в виде эллиптической модуляции тригонометрических функций от алгебраических соотношений между B_L^{mn} и B_R^{mn} , где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \times N$ – число строк и столбцов в поляризационнокодирующем оптическом модуляторе, и с помощью фазового и/или поляризационного селектора сепарируют парциальные световые потоки, соответствующие левому и правому ракурсу, направляя их в левую и правую зоны наблюдения, согласно изобретению формируют на *n*-ом столбце поляризационно-кодирующего оптического модулятора *n*-ую группу из первого и второго парциальных световых потоков, несущих информацию о *n*-ых столбцах изображений соответственно левого и правого ракурсов, при этом параметры кодирующей эллиптической модуляции поляризации задают взаимно ортогональными как между двумя парциальными световыми потоками в *n*-ой группе, так и между *n*-ой и (n+1)-ой группами парциальных световых потоков, с помощью фазового и/или поляризационного селектора осуществляют декодирование ракурсов в плоскости декодирования и последующую поляризационную фильтрацию светового потока, при этом плоскость декодирования разбивают на столбцы, оси симметрии которых расположены на пересечениях центральных осей одинаковыми параметрами кодирующей парциальных световых потоков С эллиптической модуляции поляризации, и в каждой паре смежных столбцов сдвигают фазу δ световой волны на разностную величину $\Delta \delta_i = g \frac{\pi}{4}$ между смежными i и (*i*+1) столбцами плоскости декодирования, либо изменяют состояние поляризации световой волны с реализацией двух взаимно ортогональных изменений состояния

поляризации для смежных i и (i+1) столбцов плоскости декодирования (g = 1, 2, ..., i= 1, 2, ...).

Поставленная задача решается также за счет того, что в устройстве, содержащем источник стереовидеосигнала, электронный функциональный блок и расположенные последовательно на одной оптической оси электрически управляемый матричноадресуемый поляризационно-кодирующий оптический модулятор и поляризационный селектор, выходы которого оптически связаны с левой и правой зонами наблюдения, при этом для mn -го элемента поляризационно-кодирующего оптического модулятора его передаточная характеристика определяется обратными тригонометрическими функциями от отношения линейных комбинаций $(S_L^{mn})^2$ и $(S_R^{mn})^2$, где S_L^{mn} и S_R^{mn} – сигналы, квадраты амплитуд которых соответствуют величинам B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого и правого ракурсов, причем выход источника стереовидеосигнала подключен к электрическим входам поляризационно-кодирующего оптического модулятора и электронного функционального блока, выход которого подключен к входу поляризационного селектора, где m = 1, 2, ..., M, n = 1, 2, ..., N, а M × N – число строк и столбцов в поляризационно-кодирующем оптическом изобретению поляризационно-кодирующий оптический модуляторе, согласно модулятор выполнен с возможностью реализации для каждой пары *n*-го и (*n*+1)-го столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества, а поляризационный селектор выполнен со столбцовой электрической адресацией слоя рабочего вещества с одинаковым начальным направлением оптической анизотропии для всего слоя при возможности реализации в каждой смежной паре столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества либо с столбцовой организацией слоя рабочего вещества, где смежным столбцам соответствуют взаимно ортогональные начальные направления оптической анизотропии вещества, а плоскость слоя рабочего вещества поляризационного селектора расположена на расстоянии d от плоскости слоя рабочего вещества поляризационно-кодирующего оптического модулятора, где $d = \frac{Dp}{h}$, D – расстояние от поляризационно-кодирующего оптического модулятора до 30H наблюдения, р – период расположения N столбцов поляризационно-кодирующего

6

оптического модулятора, *b* – расстояние между центральными точками любых двух смежных зон наблюдения.

Реализация безочкового наблюдения стереоизображения в способе и устройстве обусловлена наличием пространственно периодической модуляции поляризации и/или фазы света (реализуемой с помощью поляризационного и/или фазового селектора с периодической структурой), ведущей к сепарации парциальных световых потоков, несущих изображения левого и правого ракурсов, в левую и правую зоны наблюдения.

Достоинством способа и устройства является полное разрешение стереоизображения в каждом ракурсе, равное полному разрешению $M \times N$ дисплея.

Достоинством первого частного варианта реализации способа и устройства для его осуществления является технологичность конструкции вследствие возможности использования трех одинаковых по структуре рабочего слоя оптических модуляторов на основе закрученной на 90° градусов ЖК структуры (twist-структуры) в нематическом жидком кристалле (ЖК), соответственно, в качестве модулятора интенсивности света, формирователя эллиптической поляризации света и селектора поляризации. Дополнительным достоинством является улучшение качества изображения из-за возможности взаимной компенсации оптической дисперсии в формирователе эллиптической поляризации света и селекторе поляризации вследствие разного знака углов начального поворота плоскости поляризации (разного знака направления закрутки ЖК молекул в двух ЖК слоях).

Достоинством второго частного варианта реализации способа и устройства для его осуществления является улучшение качества изображения за счет взаимной компенсации оптической дисперсии в формирователе эллиптической поляризации света и селекторе поляризации вследствие оптического сопряжения необыкновенного луча, распространяющегося в слое рабочего вещества одного из них, с обыкновенным лучом, распространяющимся в слое рабочего вещества другого (из-за взаимной ортогональности директоров ориентации нематического ЖК в двух слоях рабочего вещества).

Достоинством третьего, четвертого и пятого частных вариантов выполнения устройства является повышенная оптическая эффективность, обусловленная использованием чисто фазовых кодирующих и декодирующих слоев рабочего вещества поляризационно-кодирующего оптического модулятора и фазового селектора, что ведет к достаточности использования всего двух поляризаторов для всей оптической схемы устройства – для начальной поляризации входного светового потока и анализа состояния поляризации выходного.

Изобретение будет более понятно из нижеследующего подробного описания со ссылкой на чертежи.

Краткое описание чертежей

Фиг. 1-4-иллюстрация осуществления способа.

Фиг. 5 – первый частный вариант выполнения устройства и реализации способа с поляризационно-кодирующим оптическим модулятором и декодирующим поляризационным селектором на эффекте управляемого поворота угла плоскости поляризации.

Фиг. 6 – второй частный вариант выполнения устройства и реализации способа с поляризационно-кодирующим модулятором и поляризационным селектором на эффекте управляемого двулучепреломления.

Фиг. 7 – состояния поляризации на столбцах поляризационного кодирующего оптического модулятора для первого частного варианта устройства.

Фиг. 8 – фрагмент фронтального изображения строки поляризационнокодирующего оптического модулятора для первого частного варианта устройства.

Фиг. 9 – фрагмент структурной схемы первого частного варианта устройства с иллюстрацией поляризационной селекции ракурсов.

Фиг. 10 – пример конкретного выполнения поляризационного селектора в виде совокупности полосчатых линейных поляризаторов со взаимно ортогональными направлениями поляризации.

Фиг. 11 – увеличенное изображения фрагмента, выделенного пунктиром на фиг. 10.

Фиг. 12 – состояния поляризации на столбцах поляризационного кодирующего оптического модулятора для второго частного варианта устройства.

Фиг. 13 — фрагмент фронтального изображения строки поляризационнокодирующего оптического модулятора для второго частного варианта устройства.

Фиг. 14 – фрагмент структурной схемы второго частного варианта выполнения устройства с иллюстрацией поляризационной селекции ракурсов. Фиг. 15 – 18 – пример конкретного выполнения поляризационного селектора в виде электрически адресуемого по столбцам слоя нематического жидкого кристалла (ЖК) с различными видами ЖК структуры.

Фиг. 19 – состояния поляризации на столбцах поляризационного кодирующего оптического модулятора для третьего частного варианта устройства.

Фиг. 20 – фрагмент фронтального изображения строк поляризационнокодирующего оптического модулятора и структурной схемы для третьего частного варианта устройства.

Фиг. 21 — пример конкретного выполнения поляризационно-кодирующего модулятора в виде поляризатора и двух ЖК слоев - с эффектом управляемого поворота плоскости поляризации и с эффектом управляемого двулучепреломления.

Фиг. 22 – состояния поляризации на столбцах поляризационного кодирующего оптического модулятора для четвертого частного варианта устройства.

Фиг. 23 — фрагмент фронтального изображения строк поляризационнокодирующего оптического модулятора и структурной схемы для четвертого частного варианта устройства.

Фиг. 24 – пример конкретного выполнения поляризационно-кодирующего модулятора в виде поляризатора и двух ЖК слоев с эффектом управляемого поворота плоскости поляризации.

Фиг. 25 – противоположные направления закрутки ЖК молекул в двух смежных ЖК слоях поляризационно-кодирующего оптического модулятора.

Фиг. 26 – расположение цветных элементов в элементе поляризационнокодирующего оптического модулятора.

Фиг. 27 – состояния поляризации на столбцах поляризационного кодирующего оптического модулятора для пятого частного варианта выполнения устройства.

Фиг. 28 – фрагмент фронтального изображения строк поляризационнокодирующего оптического модулятора и структурной схемы для пятого частного варианта выполнения устройства.

Фиг. 29 – пример конкретного выполнения поляризационно-кодирующего модулятора в виде поляризатора и двух ЖК слоев с эффектом управляемого двулучепреломления.

Фиг. 30, 31 – взаимно ортогональные направления ориентации ЖК молекул в двух смежных ЖК слоях поляризационно-кодирующего оптического модулятора.

9

Варианты осуществления изобретения

Способ наблюдения стереоизображений (фиг. 1) заключается в том, что с матрично-адресуемого поляризационно-кодирующего оптического помощью модулятора (генератора) 1 формируют световой поток с комплексной модуляцией амплитуды, при которой в mn-ом элементе поперечного сечения светового потока совместно представлены интегральные яркости B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого L и правого R ракурсов трехмерной сцены, при этом параметры кодирующей эллиптической модуляции поляризации света заданы в виде обратных тригонометрических функций от алгебраических соотношений между B_L^{mn} и B_R^{mn} , где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \times N$ – число строк и столбцов в поляризационнокодирующем оптическом модуляторе, на *n*-ом столбце которого формируют *n*-ую группу из первого и второго парциальных световых потоков, несущих информацию о *п*-ых столбцах изображений соответственно левого и правого ракурсов, при этом параметры кодирующей эллиптической модуляции поляризации задают взаимно ортогональными как между двумя парциальными световыми потоками в *n*-ой группе, так и между *n*-ой и (*n*+1)-ой группами парциальных световых потоков, с помощью фазового и/или поляризационного декодера 2₀ осуществляют декодирование ракурсов в плоскости P-P' декодирования, а с помощью поляризационного фильтра 2_P поляризационную фильтрацию светового потока, при этом плоскость декодирования разбивают на столбцы, оси симметрии которых расположены на пересечениях центральных осей парциальных световых потоков с одинаковыми параметрами кодирующей эллиптической модуляции поляризации, и в каждой паре смежных столбцов сдвигают фазу δ световой волны на разностную величину $\Delta \delta_i = g \frac{\pi}{4}$ между смежными *i* и (*i*+1) столбцами плоскости декодирования, либо изменяют состояние поляризации световой волны с реализацией двух взаимно ортогональных изменений состояния поляризации для смежных і и (i+1) столбцов плоскости декодирования (g = 1, 2..., i = 1, 2, ...).

Левый E_L и правый E_R глаза наблюдателя расположены соответственно в левой S_L и правой S_R зонах наблюдения.

С помощью первого столбца поляризационно-кодирующего оптического модулятора 1 получают модулированный световой поток $1_{(L)}^{(R)}$, состоящий из двух

световых потоков $1^{(R)}$ и $1_{(L)}$ (фиг.2), первый из которых, парциальных соответствующий изображению первого столбца правого ракурса, поляризован в вертикальном направлении (ортогонально плоскости чертежа), чему соответствует условное обозначение верхним регистром ^(R), а второй, соответствующий изображению первого столбца левого ракурса, поляризован в горизонтальном направлении (в плоскости чертежа), чему соответствует условное обозначение нижним регистром (L). Аналогично, с помощью второго столбца получают модулированный световой поток $2_{(R)}^{(L)}$, состоящий из двух парциальных световых потоков $2^{(L)}$ и $2_{(R)}$, первый из которых, соответствующий изображению второго столбца левого ракурса, поляризован в вертикальном направлении, а второй, соответствующий изображению второго столбца правого ракурса, поляризован в горизонтальном направлении. Парциальные световые потоки $1_{(L)}$, $3_{(L)}$... и $2_{(R)}$, $4_{(R)}$ попадают соответственно в левую S_L и правую S_R зоны горизонтального направления изменения первоначального наблюдения без проходят столбцы плоскости поскольку эти световые потоки поляризации, декодирования, которые не оказывают влияния на поляризацию. Парциальные световые потоки $1^{(R)}$, $3^{(R)}$, ... и $2^{(L)}$, $4^{(L)}$, ... попадают, соответственно, в левую S_L и правую S_R зоны наблюдения за счет изменения первоначального направления поляризации с вертикального на горизонтальное под действием 90°-х ротаторов поляризации, показанных условно в виде элементов поляризационного декодера 2_ф и установленных на пересечениях осей данных световых потоков в плоскости Р-Р' пространственного $2_{\rm P}$ (показанного для фильтра Функция поляризационного декодирования. определенности в виде линейного поляризатора с горизонтальным направлением поляризации) состоит в пропускании парциальных световых потоков только с горизонтальным направлением поляризации и в задержке всех перекрестных световых потоков с вертикальным направлением поляризации после прохождения элементов поляризационного селектора 2. Подробнее фильтрация перекрестных световых потоков иллюстрирована на фиг. 3, где в увеличенном масштабе показана режекция парциальных световых потоков 1_{false}^L , 1_{false}^R и 2_{false}^R , 2_{false}^L вследствие их вертикальной (относительно плоскости чертежа) ориентации линейной поляризации при падении на линейный поляризатор 2_P, что не позволяет им распространяться в направлении правой S_R (левой S_L) зон наблюдения.

Геометрия пространственной фильтрации для полной апертуры парциальных световых потоков представлена на фиг. 4.

Устройство (фиг. 5, 6), содержит источник 3 стереовидеосигнала, электронный функциональный блок 4 и расположенные последовательно на одной оптической оси поляризационно-кодирующий матрично-адресуемый управляемый электрически оптический модулятор 1 и поляризационный селектор 2, выходы которого оптически связаны с левой S_L и правой S_R зонами наблюдения, при этом выход источника 3 стереовидеосигнала подключен к электрическим входам поляризационно-кодирующего оптического модулятора 1 и электронного функционального блока 4, выход которого подключен к электрическим входам поляризационного селектора 2, а для mn-го элемента поляризационно-кодирующего оптического модулятора его передаточная характеристика определяется обратными тригонометрическими функциями от отношения линейных комбинаций $(S_L^{mn})^2$ и $(S_R^{mn})^2$, где S_L^{mn} и S_R^{mn} – сигналы, квадраты амплитуд которых соответствуют величинам B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого и правого ракурсов, где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \times N$ число строк и столбцов в поляризационно-кодирующем оптическом модуляторе 1, который выполнен с возможностью реализации для каждой пары *n*-го и (*n*+1)-го столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества. Поляризационный селектор 2 (фиг. 6) выполнен в виде последовательно поляризационного $2_{\rm F}$ И фазового и/или декодера оптически связанных поляризационного фильтра 2_P. Поляризационный декодер 2_F выполнен со столбцовой электрической адресацией слоя рабочего вещества с одинаковым начальным направлением оптической анизотропии для всего слоя при возможности реализации в каждой смежной паре столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества либо с столбцовой организацией слоя рабочего вещества, где смежным столбцам соответствуют взаимно ортогональные начальные направления оптической анизотропии вещества. Плоскость слоя рабочего вещества поляризационного декодера 2_F расположена на расстоянии d от плоскости слоя рабочего вещества поляризационно-кодирующего оптического модулятора, где $d = \frac{Dp}{h}$, D – расстояние от поляризационно-кодирующего оптического модулятора до зон наблюдения, p – период расположения N столбцов поляризационноWO 2008/130277

12

кодирующего оптического модулятора, *b* – расстояние между центральными точками любых двух смежных зон наблюдения.

В первом частном варианте выполнения устройства (фиг. 5) поляризационнокодирующий оптический модулятор 1 выполнен в виде последовательно расположенных модулятора 1_J интенсивности света и поляризационно-кодирующего модулятора 1_{φ} эллиптической поляризации света, который включает в себя по крайней мере один слой рабочего вещества с эффектом управляемого поворота плоскости поляризации на угол φ , а поляризационный селектор 2 выполнен в виде управляемого линейного поляризатора с эффектом управляемого поворота плоскости поляризации на угол φ . Любой *mn*-ый элемент модулятора 1_J интенсивности света оптически связан с соответствующим *mn*-м элементом кодирующего модулятора 1_{φ} эллиптической поляризации света. Коэффициент T^{mn} оптического пропускания модулятора 1_J интенсивности света для его *mn*-го элемента определяется выражением:

$$T^{mn} \sim (S_L^{mn})^2 + (S_R^{mn})^2,$$
 (1)

где $(S_L^{mn})^2$ и $(S_R^{mn})^2$ – среднеквадратичные значения сигналов, соответствующие яркостям B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого и правого ракурсов, т.е.

$$B_L^{mn} = c' (S_L^{mn})^2, \ B_R^{mn} = c' (S_R^{mn})^2,$$
(2)

где С' – константа пропорциональности.

Сигналы $(S_L^{mn})^2$ и $(S_R^{mn})^2$ получают, например, посредством фотоэлектрической регистрации интегральной яркости B_L^{mn} mn-го элемента левого ракурса и интегральной яркости B_R^{mn} mn-го элемента правого ракурса (например, с помощью соответствующих фоточувствительных элементов в апертурах двух видеокамер, установленных в двух разных точках съема информации для получения изображений двух – левого и правого – ракурсов трехмерной сцены). При условии (2) результирующие световые потоки J_L^{mn} и J_R^{mn} , исходящие от соответствующих элементов поляризационно-кодирующего оптического модулятора 1, линейно связаны с

значениями яркостей B_L^{mn} и B_R^{mn} соответствующих изображений mn-ых элементов левого и правого ракурсов отображаемой трехмерной сцены.

Поляризационная характеристика φ^{mn} модулятора 1_{φ} эллиптической поляризации света для его нечетных (1, 2, ..., 2n-1, ...) столбцов определяется выражением:

$$\varphi^{m(2n-1)} \sim \operatorname{arctg}\left(\frac{S_L^{m(2n-1)}}{S_R^{m(2n-1)}}\right),\tag{3}$$

а для четных (1, 2, ..., 2*n*, ...) столбцов – выражением:

$$\varphi_{\varphi}^{m(2n)} \sim \operatorname{arcctg}\left(\frac{S_{L}^{m(2n)}}{S_{R}^{m(2n)}}\right).$$
(4)

Поляризационная характеристика φ^{mn} определяет значение угла φ , на который поворачивается плоскость поляризации света после прохождения mn-го элемента модулятора 1_{φ} эллиптической поляризации света.

Во втором частном варианте устройства (фиг. 6) кодирующий модулятор 1_{Δ} эллиптической поляризации света включает в себя по крайней мере один слой рабочего вещества с эффектом управляемого двулучепреломления с возможностью создания фазового сдвига Δ между обыкновенным и необыкновенным лучами, а поляризационный селектор 2 выполнен виде последовательно расположенных фазового декодера $2_{\rm F}$ с эффектом управляемого двулучепреломления и линейного поляризатора $2_{\rm P}$, при этом фазовый декодер $2_{\rm F}$ выполнен с возможностью создания фазового сдвига величиной π в его нечетных столбцах и с нулевым значением фазового сдвига в четных столбцах. Коэффициент T^{mn} оптического пропускания модулятора $1_{\rm J}$ интенсивности света определяется выражением (1), а поляризационная характеристика модулятора 1_{Δ} эллиптической поляризации света для его нечетных столбцов определяется выражением:

$$\Delta^{m(2n-1)} \sim \arcsin\left(\frac{(S_L^{m(2n-1)})^2 - (S_R^{m(2n-1)})^2}{(S_L^{m(2n-1)})^2 + (S_R^{m(2n-1)})^2}\right),\tag{5}$$

а для четных столбцов – выражением:

$$\Delta^{m(2n)} \sim \arccos\left(\frac{(S_L^{m(2n)})^2 - (S_R^{m(2n)})^2}{(S_L^{m(2n)})^2 + (S_R^{m(2n)})^2}\right).$$
(6)

Для первого частного варианта устройства на фиг. 5 стрелками условно показаны взаимно ортогональные направления линейной поляризации, соответствующие выражениям (3) и (4), вдоль одной строки поляризационно-кодирующего модулятора 1_Ф эллиптической поляризации, каждый адресуемый элемент которого выполнен с эффектом поворота плоскости поляризации. Фиг. 6 иллюстрирует для второго частного варианта устройства взаимно ортогональные состояния эллиптической поляризации для одной строки поляризационно-кодирующего модулятора 1₀, каждый адресуемый элемент которого выполнен с эффектом управляемого двулучепреломления. На фиг.7 показана карта направлений линейной поляризации для всей апертуры поляризационнокодирующего модулятора 1, в первом частном варианте выполнения устройства, а на фиг. 8 и 9 - состояния поляризации на одной строке поляризационно-кодирующего модулятора 1, и соответствующее сечение компонентов первого частного варианта выполнения устройства плоскостью, параллельной оптической оси устройства и проходящей через данную строку. Конкретный пример выполнения поляризационного селектора 2 – в виде полосчатой (параллельной столбцам) структуры 2_s линейных поляризаторов со взаимно ортогональными направлениями поляризации в смежных столбцах (фиг. 10, 11).

Для второго частного варианта выполнения устройства на фиг. 12 показано состояние поляризации в апертуре поляризационно-кодирующего оптического модулятора 1_{Δ} , соответствующее выражениям (5), (6), фиг. 13 иллюстрирует ориентацию эллиптической поляризации на одной строке последнего, на фиг. 14 показано сечение компонентов второго частного варианта устройства плоскостью, параллельной оптической оси устройства и проходящей через указанную строку. Примеры конкретного выполнения слоя рабочего вещества кодирующего модулятора 1_{Δ} эллиптической поляризации света с эффектом управляемого двулучепреломления – на основе ЖК слоя 5 (фиг. 15), расположенного между стеклянными подложками 6 и 7 и электрически адресуемого по столбцам за счет приложения разности потенциалов $E=E_0$ между полосчатым электродом 8 и общим электродом 9, потенциал которого равен 0. Конкретно ЖК слой 5 выполнен в виде слоя нематической анизотропией, либо со сверхзакрученной (supertwist) структурой (фиг. 17), либо с гомеотропной структурой 15

(фиг. 18) для ЖК с отрицательной диэлектрической анизотропией. Пример конкретного выполнения слоя рабочего вещества поляризационно-кодирующего модулятора 1_Δ эллиптической поляризации света с эффектом управляемого поворота плоскости поляризации – в виде электрически адресуемого по столбцам слоя нематического ЖК с закрученной на 90° (twist) структурой (фиг. 17).

В третьем частном варианте выполнения устройства (фиг. 19 – 21) 1 поляризационно-кодирующий оптический модулятор выполнен В виде последовательно оптически связанных оптического модулятора 1₀ с эффектом управляемого поворота плоскости поляризации и фазового оптического модулятора l_{Δ} с эффектом управляемого двулучепреломления (фиг. 20), которые расположены в между двумя линейными поляризаторами 10 и 2_P. Конкретно поляризационно-кодирующий оптический модулятор 1₀ и фазовый оптический модулятор 1_Δ выполнены, соответственно, в виде электрически матрично-адресуемых слоев 11 и 12 нематического ЖК с положительной диэлектрической анизотропией (фиг. 21), первый из которых представляет из себя закрученную (twist) структуру, а второй - гомогенно ориентированную структуру.

В четвертом частном варианте выполнения устройства (фиг. 22 – 24) поляризационно-кодирующий оптический модулятор 1 выполнен в виде двух последовательно оптически связанных оптических модулятора l_{φ_1} и l_{φ_2} (фиг. 23) с эффектом управляемого поворота плоскости поляризации, которые расположены между двумя линейными поляризаторами 10 и 2_P. В конкретном примере оптические модуляторы l_{φ_1} и l_{φ_2} выполнены, соответственно, в виде электрически матричноадресуемых слоев 13 и 14 нематического ЖК с положительной диэлектрической анизотропией (фиг. 24), представленных закрученными (twist) структурами, характеризующимися взаимно противоположными направлениями закрутки ЖК молекул (фиг. 25).

В случае цветного отображения поляризационно-кодирующий оптический модулятор 1 содержит в каждом своем *mn*-м элементе группу из трех цветных элементов-фильтров R_{mn}, G_{mn}, B_{mn} (фиг. 26), которые имеют индивидуальную электрическую адресацию по строкам или столбцам соответственно при вертикальном или горизонтальном мультиплексировании цветных элементов.

В пятом частном варианте выполнения устройства (фиг. 27 – 31) поляризационно-кодирующий оптический модулятор 1 выполнен в виде двух последовательно оптически связанных оптических модуляторов 1, и 1, (фиг. 26 28) с эффектом управляемого двулучепреломления, которые расположены между двумя линейными поляризаторами 10 и 2_P. Конкретно, оптические модуляторы 1_A и 1_A выполнены, соответственно, в виде электрически матрично-адресуемых слоев 15 и 16 нематического ЖК с положительной диэлектрической анизотропией (фиг. 29), представленных гомеотропно ориентированными структурами, характеризующимися взаимно ортогональной начальной ориентацией ЖК молекул ЖК молекул (фиг. 28 30), что соответствует взаимной компенсации частотной дисперсии величины фазовых сдвигов Δ_1 и Δ_2 (показателей преломления n_{e_1} и n_{e_2}) первого и второго ЖК слоев 15 и 16 вследствие того, что направления распространения необыкновенных лучей e_1 и e_2 (фиг. 31), отвечающих за создание фазовых сдвигов Δ_1 и Δ_2 , пространственно разделены между собой (совпадают с направлениями распространения обыкновенных лучей o_2 и o_1 другого ЖК слоя), и разница между их начальными фазовыми сдвигами уже не содержит зависимости от длины волны света. Диэлектрическая анизотропия $\Delta \varepsilon$ ЖК слоя, определяемая условием $\Delta \varepsilon = \sqrt{n_o} - \sqrt{n_e}$, может быть как положительной $\Delta \varepsilon > 0$, так и отрицательной $\Delta \varepsilon < 0$ в зависимости от материала ЖК. ЖК молекулы с отрицательной $\Delta \varepsilon$ всегда ориентируются длинной осью вдоль приложенного электрического поля $E = E_0$, а с положительной $\Delta \varepsilon$ – поперек поля, поэтому для реализации поворота ЖК молекул под действием внешнего электрического поля, ведущего к реализации электрического управления двулучепреломлением слоя ЖК, начальную ориентацию ЖК слоя в первом случае выбирают гомогенной (длинные оси ЖК молекул ориентированы в одном направлении параллельно стеклянным подложкам), во втором случае – гомеотропной (длинные оси ЖК молекул Одноименными осями ориентированы ортогонально стеклянным подложкам). эллипсоидов показателей преломления двух ЖК слоев являются оси, соответствующие одноименным показателям преломления (одноименными являются оси эллипсоидов двух ЖК слоев, соответствующие показателю n_e преломления для необыкновенного луча или показателю n_o преломления для обыкновенного луча).

Устройство работает следующим образом.

Работа первого частного варианта выполнения устройства и реализация первого частного варианта осуществления способа (фиг. 5) рассматривается на примере выделения в левом S_L и правом S_K окнах наблюдения парциальных световых потоков от *mn*-го элемента второго столбца изображения, в котором совместно закодированы (в параметрах эллиптической модуляции) *m*-е элементы сигналов $S_L^{m(2)}$ и $S_R^{m(2)}$ левого и правого ракурсов в соответствии с выражением:

$$\varphi^{m(2)} \sim \operatorname{arctg}\left[\frac{(S_L^{m(2)})^2}{(S_R^{m(2)})^2}\right] = \operatorname{arctg}\left(\frac{B_L^{m(2)}}{B_R^{m(2)}}\right),\tag{7}$$

определяющим угол поворота линейной поляризации в общем (для обоих $S_L^{m(2)}$ и $S_R^{m(2)}$) световом потоке, что соответствует частному случаю выражения (3). Параметры поляризационной модуляции, определяемой выражением (6), задаются поляризационнокодирующим модулятором 1_{φ} эллиптической поляризации (фиг. 5, 7, 8). При этом интенсивность $J_{L+R}^{m(1)}$ указанного общего (суммарного) светового потока определяется выражением:

$$J_{L+R}^{m(2)} = B_L^{m(2)} + B_R^{m(2)}$$
(8)

и задается модулятором 1_л интенсивности света.

Поляризационный столбцовый элемент $2_{(2i)\phi}$ поляризационного декодера 2_{ϕ} , расположенный на пути следования светового потока от второго столбца поляризационно-кодирующего оптического модулятора 1 к правой зоне S_R, характеризуется направлением поляризации вдоль оси X (фиг. 9), а поляризационный столбцовый элемент $2_{(2i-1)\phi}$, расположенный на пути следования светового потока от второго столбца поляризационно-кодирующего оптического модулятора 1 к левой зоне S_L, характеризуется направлением поляризации вдоль оси Y. Угол $\phi^{m(2)}$ наклона линейной поляризации по отношению к осям X и Y определяет соотношения между интенсивностями $J_x^{m(2)}$ и $J_y^{m(2)}$ света:

$$\varphi^{m(2)} = \operatorname{arctg}\left(\frac{J_{y}^{m(2)}}{J_{x}^{m(2)}}\right).$$
(9)

Величины $J_x^{m(2)}$ и $J_y^{m(2)}$ интенсивности определяют величины интенсивностей парциальных световых потоков, поступающих от второго столбца поляризационнокодирующего модулятора 1 соответственно в правую S_R и левую S_L зоны наблюдения. Из (7), (8) и (9) следует система уравнений:

$$J_x^{m(2)} + J_y^{m(2)} = B_R^{m(2)} + B_L^{m(2)}; \frac{J_x^{m(2)}}{J_y^{m(2)}} = \frac{B_R^{m(2)}}{B_L^{m(2)}}.$$
 (10)

Из (10) следует, что $J_x^{m(2)} = B_R^{m(2)}$ и $J_y^{m(2)} = B_L^{m(2)}$. Это является доказательством того, что в левое и правое окна наблюдения поступают световые потоки с интенсивностями $J_y^{m(2)}$ и $J_x^{m(2)}$, равными яркостям, соответственно, левого $B_R^{m(2)}$ и правого $B_L^{m(2)}$ ракурсов изображения, предъявляемых совместно на втором столбце поляризационно-кодирующего модулятора 1. Такой ход рассуждений справедлив для каждой из M строк изображения.

Работа второго частного варианта выполнения устройства и реализация второго частного варианта осуществления способа (фиг. 6, 12 – 14) рассматривается для аналогичной первому частному варианту топологии распространения парциальной световых потоков от второго столбца поляризационно-кодирующего оптического модулятора 1 в левую S_L и правую S_R зоны наблюдения. При этом соблюдается соотношение (8), поскольку модулятор интенсивности 1_J такой же, что и в первом частном варианте устройства. Кодирующая эллиптическая модуляция, формируемая фазовым оптическим модулятором 1_{Δ} за счет создания фазового сдвига $\Delta \delta^{m(2)}$ между необыкновенным ө и обыкновенным лучами, определяется выражением

$$\Delta \delta^{m(2)} = \arccos\left(\frac{B_L^{m(2)} - B_R^{m(2)}}{B_L^{m(2)} + B_R^{m(2)}}\right).$$
(11)

Для определения интенсивностей светового потока, попадающего в зоны наблюдения, применяется общее уравнение эллиптической поляризации:

$$\left(E_x^{m(2)}\right)^2 + \left(E_y^{m(2)}\right)^2 - 2E_x^{m(2)}E_y^{m(2)}\cos\Delta\delta^{m(2)} = \left(E_0^{m(2)}\right)^2\sin^2\Delta\delta^{m(2)},$$

где $E_x^{m(2)}$ и $E_y^{m(2)}$ есть х-и у- компоненты электрического вектора световой волны,

E₀ – амплитуда световой волны;

 $\Delta \delta^{m(2)}$ – сдвиг фазы между х- и у- компоненты электрического вектора световой волны, создаваемый управляемой задержкой между обыкновенным и необыкновенным лучами.

Наличие линейного поляризатора 2_P с ориентацией оси поляризации вдоль направления у = x (фиг. 12, 13) создает для парциального светового потока, идущего от второго столбца поляризационно-кодирующего оптического модулятора 1 в правую S_R зону наблюдения, следующее первое условие поляризационного анализа:

$$E_x^{m(2)} = E_y^{m(2)} = E_{x=y}^{m(2)}.$$
(13)

Наличие дополнительной фазовой задержки величиной π на пути парциального потока от того же столбца в левую зону наблюдения, эквивалентно использованию для него вертикально ориентированного линейного поляризатора, т. е. создающее второе условие поляризационного анализа:

$$E_x^{m(2)} = E_{-y}^{m(2)} = E_{x=-y}^{m(2)}.$$
 (14)

Подстановка (13) и (14) в уравнение (12) и взятие отношения между результатами подстановки дает:

$$\frac{J_{x=y}^{mn}}{J_{x=-y}} = \frac{1 + \cos \Delta \delta^{m(2)}}{1 - \cos \Delta \delta^{m(2)}},$$
(15)

где
$$J_{x=-y}^{m(2)} = (E_{x=-y}^{m(2)})^2, \ J_{x=y}^{m(2)} = (E_{x=y}^{m(2)})^2.$$

Подстановка (11) в (15) дает результат $\frac{J_{x=y}^{mn}}{J_{x=-y}} = \frac{B_L^{m(2)}}{B_R^{m(2)}}$, что с учетом (8) приводит

к соотношениям $J_{x=-y}^{m(2)} = B_R^{m(2)}$ и $J_{y=x}^{m(2)} = B_L^{m(2)}$, что является доказательством, что в левое S_L и правое S_R окна наблюдения поступают световые потоки с интенсивностями $J_{y=x}^{m(2)}$ и $J_{x=-y}^{m(2)}$, равными яркостям соответственно левого $B_R^{m(2)}$ и правого $B_L^{m(2)}$ ракурсов изображения, предъявляемых совместно на втором столбце поляризационнокодирующего модулятора 1, что справедливо для каждой из M строк изображения.

Работа третьего варианта устройства (фиг. 6, 19 – 21) рассматривается для того же второго столбца изображения (*n*=2), что и в первом и втором частных вариантах устройства, при этом уравнение эллиптической поляризации имеет вид:

$$\frac{\left(E_x^{m(2)}\right)^2}{\cos^2\varphi^{m(2)}} + \frac{\left(E_y^{mn}\right)^2}{\sin^2\varphi^{m(2)}} - \frac{2E_x^{m(2)}E_y^{m(2)}}{\cos\varphi^{m(2)}\sin\phi^{m(2)}}\cos\Delta^{m(2)} = \left(E_0^{m(2)}\right)^2\sin^2\Delta^{m(2)}, \quad (16)$$

решения которого выводятся при условиях (13) и (14), что определяет величины интенсивностей световых потоков $J_{x=y}^{mn}$ и $J_{x=-y}^{mn}$ для левой S_L и правой S_R указанных зон наблюдения. Подстановка (13) в (16) дает следующее выражение

$$J_{x=y}^{m(2)} = \frac{\left(E_0^{m(2)}\right)^2 \sin^2 \Delta^{m(2)}}{t_{\varphi}^+ \cos \Delta^{m(2)}},$$
(17)

где величина t_{φ}^{+} определяется выражением

$$t_{\varphi}^{+} = \frac{\left(1 + tg^{2} \frac{\varphi^{m(2)}}{2}\right) \left(1 - tg \frac{\varphi^{m(2)}}{2}\right)^{2}}{tg^{2} \frac{\varphi^{m(2)}}{2}}.$$
(18)

Подстановка (14) в (16) дает выражение

$$J_{x=-y}^{m(2)} = \frac{\left(E_0^{m(2)}\right)^2 \sin^2 \Delta^{m(2)}}{t_{\varphi}^- \cos \Delta^{m(2)}},$$
(19)

где величина t_{φ}^{-} определяется как

$$t_{\varphi}^{+} = \frac{\left(1 + tg^{2} \frac{\varphi^{m(2)}}{2}\right) \left(1 + tg \frac{\varphi^{m(2)}}{2}\right)^{2}}{tg^{2} \frac{\varphi^{m(2)}}{2}}.$$
(20)

Отношение между (17) и (19) с учетом (10) дает:

$$\frac{J_{x=y}^{mn}}{J_{x=-y}^{mn}} = \frac{B_L^{mn}}{B_R^{mn}} = \left(\frac{1+\sin\frac{\varphi^{mn}}{2}}{1-\sin\frac{\varphi^{mn}}{2}}\right)^2,$$
(21)

откуда искомое значение для $\varphi^{m(2)}$

$$\varphi^{m(2)} = 2 \arcsin\left[\frac{\left(\sqrt{B_L^{m(2)}} - 1\right)\left(\sqrt{B_R^{m(2)}} + 1\right)}{\sqrt{B_L^{m(2)}B_R^{m(2)}}}\right].$$
(22)

Суммирование (17) и (19) приводит к

$$J_{x=y}^{m(2)} + J_{x=-y}^{m(2)} = A^{m(2)} \frac{1 - \cos^2 \Delta^{m(2)}}{\cos \Delta^{m(2)}},$$
(23)

где $A^{m(2)}$ определяется выражением

$$A^{m(2)} = \left(E_0^{m(2)}\right)^2 \left(\frac{\cos^2 \frac{\varphi^{m(2)}}{2} \sin^2 \frac{\varphi^{m(2)}}{2}}{2 + \sin^2 \frac{\varphi^{m(2)}}{2}}\right).$$
(24)

Из (23) находится значение $\Delta^{m(2)}$ фазового сдвига, которое с учетом (10) имеет вид:

$$\Delta^{m(2)} = \arccos\left(\frac{\sqrt{\left(B_{L}^{m(2)} + B_{R}^{m(2)}\right)^{2} + 4\left(A^{m(2)}\right)^{2}} - B_{L}^{m(2)} - B_{R}^{m(2)}}{2A^{m(2)}}\right).$$
(25)

Значение угла $\varphi^{m(2)}$ поворота плоскости поляризации, определяемое из (22) и реализуемое с помощью оптического модулятора 1_{φ} (фиг. 20), в совокупности со значением фазовой задержки $\Delta^{m(2)}$, определяемым из (25) и реализуемым с помощью оптического модулятора 1_{Δ} , обеспечивают формирование соответствующих парциальных световых потоков (с интенсивностями, определяемыми значениями

яркостей элементов второго столбца изображения левого $B_L^{m(2)}$ и правого $B_R^{m(2)}$ ракурсов) в левой S_L и правой S_R зонах наблюдения.

Работа четвертого варианта выполнения устройства (фиг. 6, 22–25) описывается следующим видом уравнения эллиптической поляризации:

$$\frac{\left(E_x^{m(2)}\right)^2}{\cos^2 \Delta_{\varphi}^{m(2)}} + \frac{\left(E_{x=-y}^{m(2)}\right)^2}{\sin^2 \Delta_{\varphi}^{m(2)}} = \left(E_0^{m)2}\right)^2,\tag{27}$$

где $\Delta_{\varphi}^{m(2)}$ есть разность между углами поворота плоскости поляризации, реализуемыми первым 1_{φ_1} и вторым 1_{φ_2} оптическими модуляторами ($\Delta_{\varphi}^{m(2)} = \varphi_1^{m(2)} - \varphi_2^{m(2)}$).

Решение данного уравнения с учетом соотношений (10) дает искомые значения углов $\varphi_1^{m(2)}$ и $\varphi_2^{m(2)}$ (передаточных функций оптических модуляторов 1_{φ_1} и 1_{φ_2}).

Работе пятого варианта выполнения устройства (фиг. 6, 27–31) соответствует следующий вид уравнения эллиптической поляризации:

$$\left(E_{x=y}^{m(2)}\right)^{2} + \left(E_{x=y}^{m(2)}\right)^{2} - 2\left(E_{x}^{m(2)}\right)^{2} \cos\left(\Delta\delta_{1}^{m(2)} - \Delta\delta_{2}^{m(2)}\right) = \left(E_{0}^{m(2)}\right)^{2} \sin^{2}\left(\Delta\delta_{1}^{m(2)} - \Delta\delta_{2}^{m(2)}\right), (28)$$

где $\Delta_1^{m(2)} - \Delta_2^{m(2)}$ есть разность между величинами фазовых задержек соответственно в первом 1_{Δ_1} и втором 1_{Δ_2} оптических модуляторах с управляемым двулучепреломлением.

Решение данного уравнения с учетом соотношений (10) дает искомые значения фазовых задержек $\Delta_1^{m(2)}$ и $\Delta_2^{m(2)}$ (передаточных функций оптических модуляторов 1_{Δ_1} и 1_{Δ_2}).

Во всех частных вариантах выполнения устройства поляризационнокодирующий оптический модулятор 1 может быть выполнен на основе как стандартных современных жидкокристаллических матриц (подавляющее большинство которых основано на использовании нематических ЖК структур с 90°-ной закруткой), так и с использованием разрабатываемых ЖК матриц на гомеотропных структурах с положительной диэлектрической анизотропией (VA-vertical alignment дисплеи – см. Amimori I. et al. Deformed nanostructure of photo-induced biaxial cholesteric films and their application in VA-mode LCDs – Journal of the SID, 2005, v.13. № 9, р. 799). В качестве матрично-адресуемого генератора интенсивности света 1_л могут быть использованы любые светодиодные дисплеи (в том числе на органических светодиодах – OLED), плазменные дисплеи.

При действии традиционного линейного поляризатора на неполяризованный световой поток результирующая потеря интенсивности составляет около 50%. В третьем, четвертом и пятом вариантах выполнения устройства в качестве поляризатора 10 возможно использование не только традиционных линейных поляризаторов, но и циркулярных поляризаторов на основе холестерических пленок, позволяющих теоретически получить близкую к предельной (100%) оптическую эффективность преобразования неполяризованного света – см. Lung-Shiang Luh L. et al. A broadband circularly polarized film. - Journal of the SID, 2003, v.11. № 3, р. 457, что ведет к максимизации оптической эффективности устройства в целом, поскольку все компоненты (кроме конечного поляризатора) в указанных частных вариантах выполнения устройства оказывается чисто фазовыми или оптически активными по действию на ориентацию плоскости поляризации, т.е. выполняют свою функцию без принципиального поглощения интенсивности поляризованного светового потока.

В качестве фазовых оптических модуляторов 1_{Δ} целесообразно использовать, например, статические ЖК панели на основе π -ячеек (см. Ezhov V.A., Studentsov S.A. Volume (or stereoscopic) images on the screens of standard computer and television displays. – Proc. SPIE, 2005, v.5821, p.105) или ячеек с поверхностной модой (surface mode – см. US 4884876).

Изобретение является универсальным относительно вариантов наблюдения изображения. Возможно наблюдение стереоскопических изображений не только безочковым методом, но и при необходимости (если требуется наблюдение без ограничения положения пользователя в рамках допустимой угловой апертуры дисплея) стереоочков (c взаимно пассивных поляризационных использованием С ортогональными поляризационными фильтрами). Для этого электрически выключают фазовые или поляризационные неоднородности в поляризационном селекторе 2 и исключают действие поляризационного фильтра 2_Р (если не предусмотрена возможность электрического выключения его действия) механическим удалением этого фильтра (выполняемого в таком случае съемным). При этом не требуется его пространственная юстировка при обратной установке, поскольку он является пространственно однородным.

К моноскопическому отображению (без очков) переходят за счет электрического выключения фазовых или поляризационных неоднородностей в поляризационном селекторе 2 и подачей моноскопического изображения на поляризационно-кодирующий модулятор 1.

Возможно наблюдение двух совершенно различных моноскопических изображений двумя наблюдателями одновременно на одном дисплее с полным разрешением для каждого изображения (равным разрешению экрана дисплея), если вместо левого и правого ракурсов подавать указанные два изображения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ наблюдения стереоизображений с полным разрешением для каждого ракурса, заключающийся в том, что с помощью матрично-адресуемого поляризационнокодирующего оптического модулятора или генератора формируют световой поток с комплексной модуляцией амплитуды и поляризации, при которой в mn-ом элементе поперечного сечения светового потока совместно представляют интегральные яркости B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого L и правого R ракурсов трехмерной сцены, а параметры кодирующей эллиптической модуляции поляризации света задают в виде обратных тригонометрических функций от алгебраических соотношений между B_L^{mn} и B_R^{mn} , где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \ge N$ – число строк и столбцов в поляризационно-кодирующем оптическом модуляторе, и с помощью фазового и/или поляризационного селектора сепарируют парциальные световые потоки, соответствующие левому и правому ракурсу, направляя их в левую и правую зоны наблюдения, отличающееся тем, что формируют на *п*-ом столбце поляризационнокодирующего оптического модулятора *n*-ую группу из первого и второго парциальных изображений n –ых столбцах потоков. несущих информацию 0 световых соответственно левого и правого ракурсов, при этом параметры кодирующей эллиптической модуляции поляризации задают взаимно ортогональными как между двумя парциальными световыми потоками в n-ой группе, так и между n-ой и (n+1)ой группами парциальных световых потоков, с помощью фазового и/или поляризационного декодера осуществляют декодирование ракурсов в плоскости декодирования и с помощью поляризационного фильтра – поляризационную фильтрацию светового потока, при этом плоскость декодирования разбивают на столбцы, оси симметрии которых расположены на пересечениях центральных осей кодирующей С одинаковыми параметрами световых потоков парциальных эллиптической модуляции поляризации, и сдвигают фазу δ световой волны на разностную величину $\Delta \delta_i = g \pi/4$ между смежными *i* и (*i*+1) столбцами плоскости декодирования, либо изменяют состояние поляризации световой волны с реализацией двух взаимно ортогональных изменений состояния поляризации для смежных *i* и (i+1) столбцов плоскости декодирования (g = 1, 2, ..., i = 1, 2, ...).

2. Способ по п. 1, отличающийся тем, что комплексную модуляцию амплитуды и поляризации светового потока осуществляют за счет модуляции или генерации интенсивности света с помощью матричного электрически адресуемого оптического модулятора или генератора интенсивности света и за счет кодирующей эллиптической модуляции поляризации света с помощью матричного электрически адресуемого оптического оптического модуляции поляризации света с помощью матричного электрически адресуемого оптической интенсивности света с помощью матричного электрически адресуемого оптической и поляризации света с помощью матричного электрически адресуемого оптического модулятора с эффектом управляемого поворота плоскости поляризации, при этом в n-м столбце матричного электрически адресуемого оптического модулятора интенсивности света интенсивность света задают в соответствии с суммой B_L^{mn} и B_R^{mn} , а в нечетных 2n-1 и четных 2n столбцах матричного электрически адресуемого поворота плоскости поляризации осуществляют поворот плоскости поляризации света на угол

$$\varphi^{m(2n-1)} \approx \operatorname{arctg}\left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}}\right)$$
 и угол $\varphi^{m(2n)} \approx \operatorname{arcctg}\left(\frac{B_L^{m(2n)}}{B_R^{m(2n)}}\right)$, соответственно, а

декодирование ракурсов осуществляют с помощью электрически адресуемого по столбцам оптического модулятора с эффектом управляемого поворота плоскости поляризации, задавая для каждой пары его смежных i и (i + 1) столбцов (i = 1, 2, ...) взаимно ортогональные значения угла φ_i поворота плоскости поляризации.

3. Способ по п. 1, отличающийся тем, что комплексную модуляцию амплитуды и поляризации светового потока осуществляют за счет модуляции или генерации интенсивности света с помощью матричного электрически адресуемого оптического модулятора или генератора интенсивности света и за счет кодирующей эллиптической модуляции поляризации света с помощью матричного электрически адресуемого оптического оптического модулятора с эффектом управляемого двулучепреломления, при этом в n-м столбце матричного электрически адресуемого оптического модулятора или генератора интенсивность света задают в соответствии с суммой B_L^{mn} и B_R^{mn} , а в нечетных 2n-1 и четных 2n столбцах матричного электрически адресуемого оптического модулятора с эффектом управляемого двулучепреломления осуществляют фазовый сдвиги $\Delta\delta$ между обыкновенным и необыкновенным лучами в

соответствии с выражениями
$$\Delta \delta^{m(2n-1)} \approx \arccos \left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}} \right)$$
 и

$$\Delta \delta^{m(2n)} \approx \arcsin\left(\frac{B_L^{m(2n)}}{B_R^{m(2n)}}\right) + \Delta_0$$
, где дополнительный фазовый сдвиг Δ_0 равен

 $\frac{\pi}{4}(f-1)$ при f = 1, 2, 3, ..., и осуществляют фазовое декодирование с помощью электрически адресуемого по столбцам оптического модулятора с эффектом управляемого двулучепреломления, задавая между его смежными *i* и (*i*+1) столбцами фазовый сдвиг величиной $\Delta \delta_i = g \frac{\pi}{4}$ между обыкновенным и необыкновенным лучами (g = 1, 2, ..., i = 1, 2, ...).

4. Способ по п. 1, отличающийся тем, что комплексную модуляцию амплитуды и поляризации света осуществляют с помощью последовательно оптически связанных поляризатора и двух матричных электрически адресуемых фазовых и/или поляризационных оптических модуляторов, причем при использовании двух оптических модуляторов с эффектом управляемого двулучепреломления с помощью первого из них задают фазовый сдвиг величиной $\Delta\delta_1$ между обыкновенным и необыкновенным лучами, а с помощью второго - фазовый сдвиг величиной $\Delta\delta_2$, при этом разность $\Delta\delta_1 - \Delta\delta_2$ выбирается в нечетных 2n-1 и четных 2n столбцах обоих соответствии с выражениями $\Delta \delta_1^{m(2n-1)}$ модуляторов В оптических $\Delta \delta_2^{m(2n-1)} \approx \arccos\left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}}\right) \qquad \text{if} \qquad \Delta \delta_1^{mn} - \Delta \delta_2^{m(2n)} \approx \arcsin\left(\frac{B_L^{m(2n)}}{B_R^{m(2n)}}\right) + \Delta_0,$ где

дополнительный фазовый сдвиг Δ_0 равен $\frac{\pi}{4}(f-1)$, где f = 1, 2, 3, ..., при использовании двух оптических модуляторов с эффектом управляемого поворота плоскости поляризации с помощью первого из них задают угол поворота φ_1 плоскости поляризации света, а с помощью второго - угол поворота φ_2 , при этом разность $\varphi_1 - \varphi_2$ выбирается в нечетных 2n-1 и четных 2n столбцах обоих оптических модуляторов в

соответствии с выражениями
$$\varphi_1^{m(2n-1)} - \varphi_2^{m(2n-1)} \approx arctg \left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}} \right)$$
 и $\varphi_2^{m(2n)} \approx$

 $arcctg\left(\frac{B_{L}^{m(2n)}}{B_{R}^{m(2n)}}\right)$, а при использовании одного из оптических модуляторов с эффектом

управляемого двулучепреломления, а другого – с эффектом управляемого поворота плоскости поляризации, с помощью первого из них осуществляют фазовый сдвиг между обыкновенным и необыкновенным лучами величиной $\Delta \delta_1$ в нечетных 2n-1 и четных

2n столбцах в соответствии с выражениями $\Delta \delta_1^{m(2n-1)} = \arccos \left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}} \right)$ либо

 $\Delta \delta_1^{m(2n)} \approx \arcsin\left(\frac{B_L^{m(2n)}}{B_R^{m(2n)}}\right) + \Delta_0$, а с помощью второго осуществляют поворот

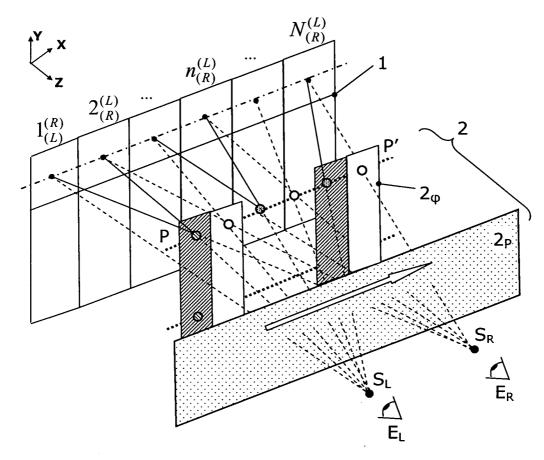
плоскости поляризации на угол φ_2 в нечетных 2n-1 и четных 2n столбцах в

соответствии с выражениями $\varphi_2^{m(2n-1)} \approx arctg\left(\frac{B_L^{m(2n-1)}}{B_R^{m(2n-1)}}\right)$ либо $\varphi_2^{m(2n)} \approx$

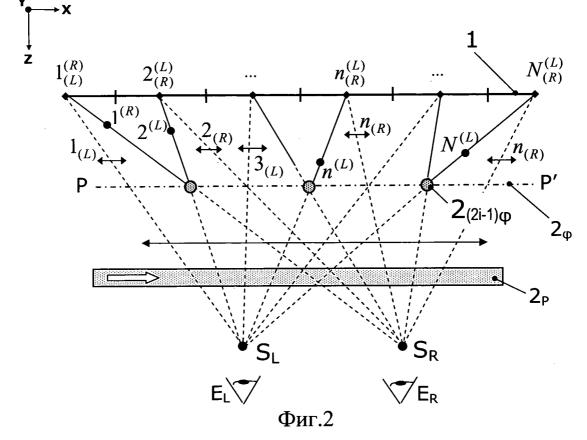
$$\operatorname{arcctg}\left(\frac{B_L^{m(2n)}}{B_R^{m(2n)}}\right).$$

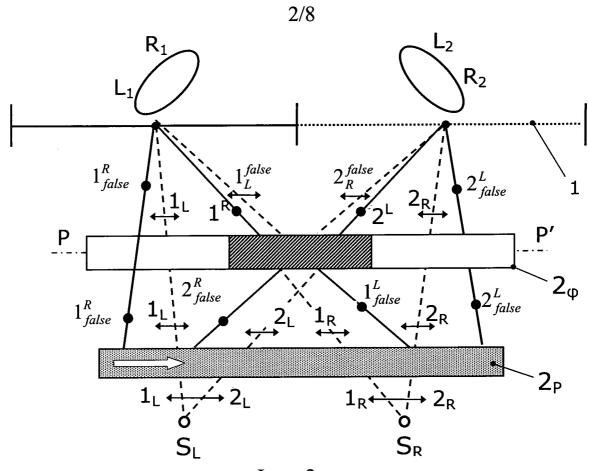
5. Способ по п. 1, отличающийся тем. что поляризационное декодирование и поляризационную фильтрацию выполняют совместно с помощью управляемого или статического поляризационного фильтра, создающего взаимно ортогональные состояния линейной или циркулярной поляризации между смежными i и (i+1) столбцами (i = 1, 2, ...) плоскости декодирования.

6. Устройство для наблюдения стереоизображений с полным разрешением для стереовидеосигнала, электронный источник ракурса, содержащее каждого функциональный блок и расположенные последовательно на одной оптической оси матрично-адресуемый поляризационно-кодирующий электрически управляемый оптический модулятор и поляризационный селектор, выходы которого оптически связаны с левой и правой зонами наблюдения, при этом для mn-го элемента передаточная поляризационно-кодирующего модулятора его оптического характеристика определяется обратными тригонометрическими функциями от отношения линейных комбинаций $(S_L^{mn})^2$ и $(S_R^{mn})^2$, где S_L^{mn} и S_R^{mn} – сигналы, квадраты амплитуд которых соответствуют величинам B_L^{mn} и B_R^{mn} mn-ых элементов изображений левого и правого ракурсов, причем выход источника стереовидеосигнала подключен к электрическим входам поляризационно-кодирующего оптического модулятора и электронного функционального блока, выход которого подключен к электрическому входу поляризационного селектора, где m = 1, 2, ..., M, n = 1, 2, ..., N, а $M \times N$ – число строк и столбцов в поляризационно-кодирующем оптическом модуляторе, отличающееся тем, что поляризационно-кодирующий оптический модулятор выполнен с возможностью реализации для каждой пары n-го и (n + 1)-го столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества, а поляризационный селектор выполнен в виде последовательно оптически связанных фазового и/или поляризационного декодера и поляризационного фильтра, при этом поляризационный декодер выполнен с столбцовой электрической адресацией слоя рабочего вещества с одинаковым начальным направлением оптической анизотропии для всего слоя при возможности реализации в каждой смежной паре столбцов двух взаимно ортогональных направлений оптической анизотропии рабочего вещества либо с столбцовой организацией слоя рабочего вещества, где смежным столбцам соответствуют взаимно ортогональные начальные направления оптической анизотропии вещества, а плоскость слоя рабочего вещества поляризационного декодера расположена на расстоянии d от плоскости слоя рабочего вещества поляризационного

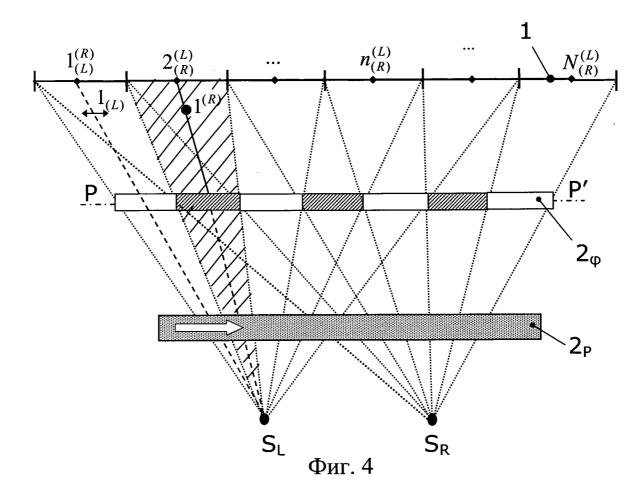

кодирующего оптического модулятора, где $d = \frac{Dp}{b}$, D – расстояние от поляризационно-кодирующего оптического модулятора до зон наблюдения, p – период расположения N столбцов поляризационно-кодирующего оптического модулятора, b – расстояние между центральными точками любых двух смежных зон наблюдения.

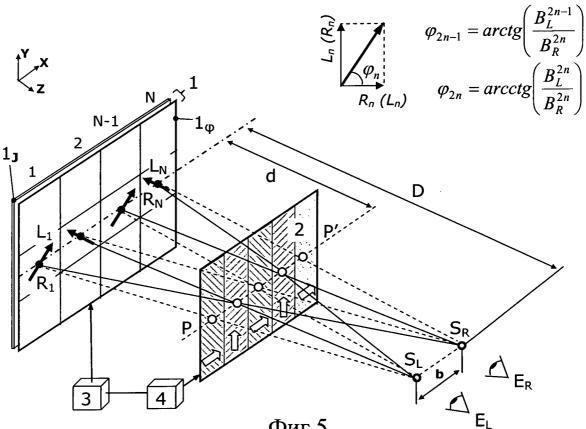
7. Устройство по п. 6, отличающееся тем, что поляризационно-кодирующий оптический модулятор выполнен в виде последовательно расположенных модулятора интенсивности света и формирователя эллиптической поляризации света, включающего в себя по крайней мере один слой жидкого кристалла с эффектом управляемого поворота плоскости поляризации либо с эффектом управляемого двулучепреломления, а поляризационный декодер выполнен на электрически адресуемом по столбцам слое жидкого кристалла с эффектом управляемого поворота плоскости поляризации либо с эффектом управляемого двулучепреломления, при этом в случае выполнения слоев жидкого кристалла модулятора эллиптической поляризации света и поляризационного декодера с эффектом управляемого поворота плоскости поляризации направления начальной закрутки жидкокристаллических молекул в этих слоях взаимно противоположны, а в случае выполнения слоев жидкого кристалла модулятора эллиптической поляризации света и поляризационного декодера на эффекте WO 2008/130277

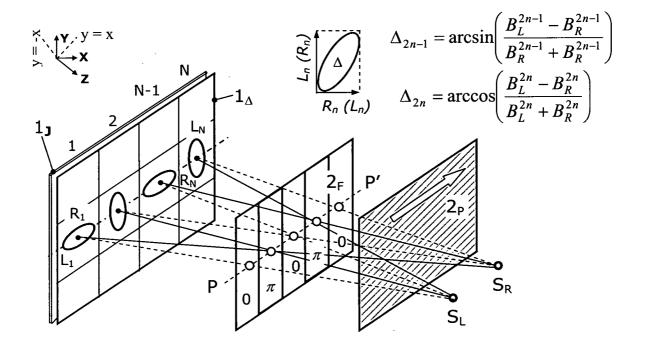

30


управляемого двулучепреломления начальные направления одноименных осей эллипсоидов показателей преломления этих слоев взаимно ортогональны.

8. Устройство по п. 6, отличающееся тем, что поляризационно-кодирующий оптический модулятор выполнен в виде последовательно расположенных линейного либо циркулярного поляризатора и двух жидкокристаллических фазовых модуляторов, оба из которых выполнены с эффектом управляемого поворота плоскости поляризации либо с эффектом управляемого двулучепреломления, причем в случае выполнения с эффектом управляемого поворота плоскости поляризации первый и второй фазовые модуляторы характеризуются взаимно противоположными направлениями закрутки жидкокристаллических молекул, а в случае выполнения с эффектом управляемого двулучепреломления с эффектом управляемого двулучения в случае выполнения с эффектом управляемого двулучения и второй фазовые модуляторы характеризуются взаимно противоположными направлениями закрутки жидкокристаллических молекул, а в случае выполнения с эффектом управляемого двулучепреломления первый и второй фазовые модуляторы характеризуются взаимно ортогональными направлениями одноименных осей эллипсоидов показателей преломления, а поляризационный декодер выполнен на электрически адресуемом по столбцам слое жидкого кристалла с эффектом управляемого двулучепреломления либо с эффектом управляемого поворота плоскости поляризации.



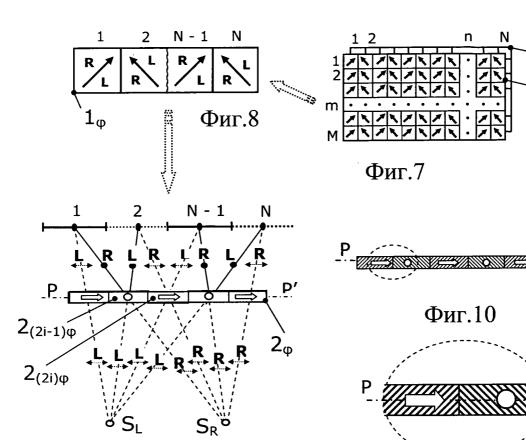

Фиг.1



Фиг.5

Фиг.6

1ງ


 $\mathbf{1}_{\phi}$

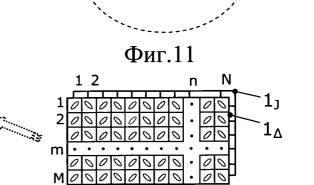
<u>P'</u>

 2_{s}

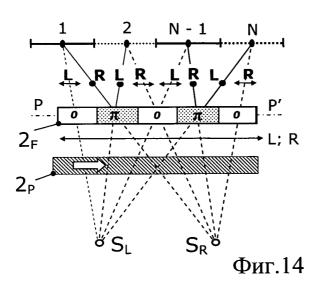
P'

2

1

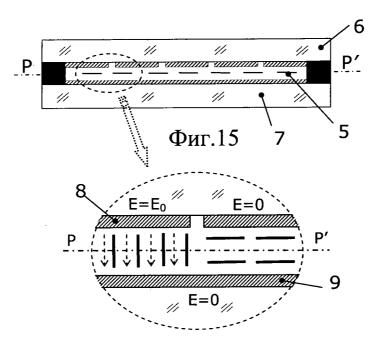

Ζ

Х

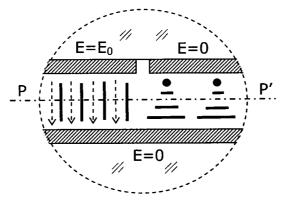


N - 1

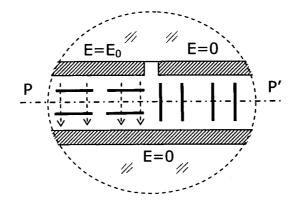
Фиг.13

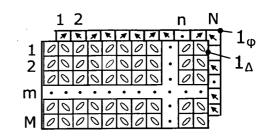


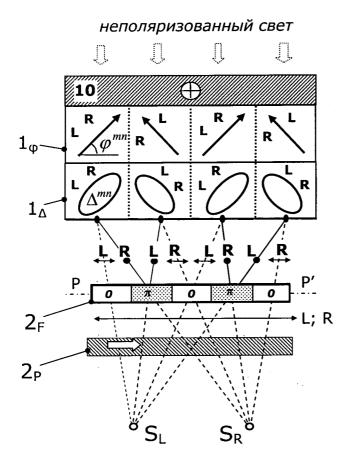
Фиг.12

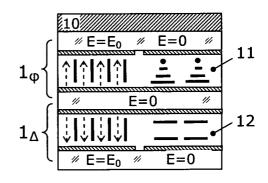


V

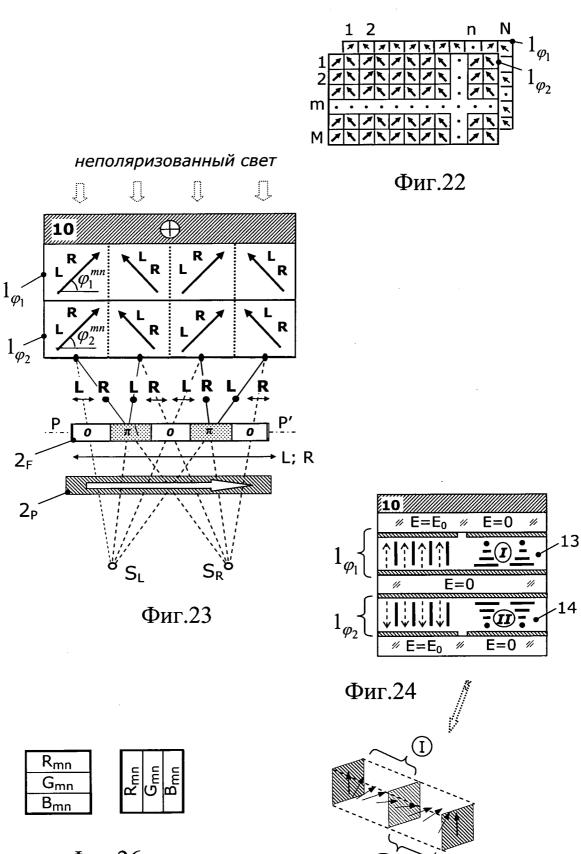

5/8

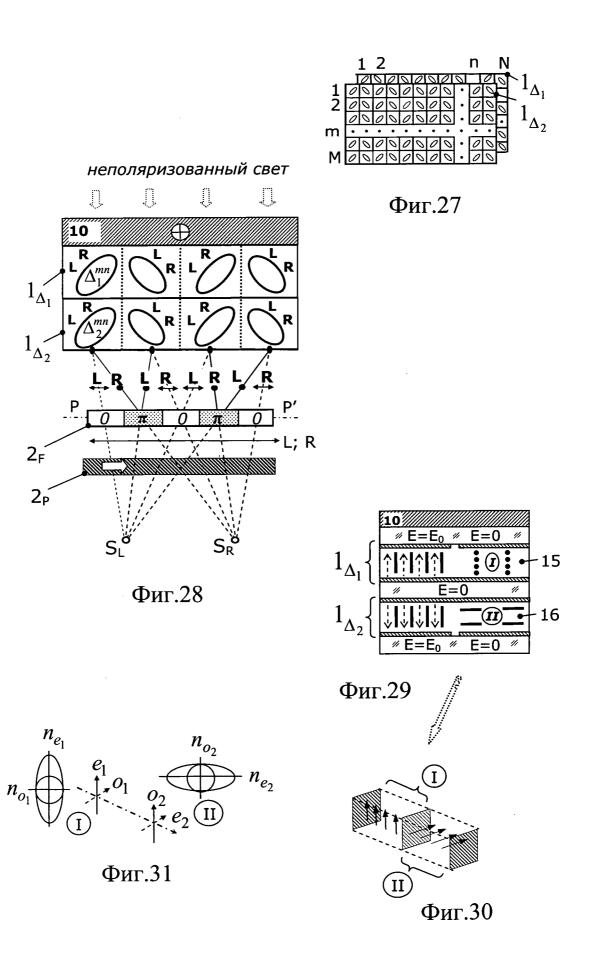

Фиг.16


Фиг.17


Фиг.18

Фиг.19




Фиг. 21

Фиг.25

Π

Фиг.26

INTERNATIONAL SEARCH REPORT

International application No.

PCT/RU2008/000233

A. CLASSIFICATION OF SUBJECT MATTER

G02B 27/22 (2006.01) **H04N 15/00** (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G02B 27/22, 27/26, 27/00, H04N 15/00, 13/00, 13/04, G06T 15/00, G09G 5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

RUPAT, Esp@cenet, USPTO DB

C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. Α RU 2097940 C1 (AKTSIONERNOE OBSCHESTVO ZAKRYTOGO 1-8 TIPA"RAKURS-ZD") 27.1 1.1997, the claims, page 7, right column, line 57 -page 8, left column, line 48, page 9, left column, line 14 page 9, right column, line 5, page 12, left column, line 25- page 13, left column, line 35, figures 1, 2, 7 1-8 RU 2260829 C2 (SARATOVSKII GOSUDARSTVENNY Α TEKHNICHESKY UNIVERSITET) 20.09.2005, the abstract, the claims, figures 1, 2 WO 2007/024118 A1 (MASTER IMAGE CO., LTD.) 01.03.2007, the 1-8 A claims, par. 36, 38-40, 45-46, figures 4, 5, 10, the abstract Α 1 - 8US 5969850 A (SHARP KABUSHIKI KAISHA) 19.10.1999, the claims, the abstract, figures 4, 8 X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: "T" later document published after the international filing date or priority "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "T." "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 27 June 2007 (27.06.2007) 24 July 2008 (24.07.2008) Name and mailing address of the ISA/ Authorized officer RU Facsimile No. Telephone No. Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/RU2008/000233

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
Р, А	RU 2306680 C1 (EZHOV VASILY ALEKSANDROVICH) 20.09.2007, the claims, the abstract	1-8				

ΟΤ	НЕТ О МЕЖДУНАРОДНОМ ПО	ЭИСКЕ	Международная PCT/RU 2008/0	
А. КЛАССІ	ИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИ		2 (2006.01)	
Согласно Мо	еждународной патентной классификации МП	H04N 15/00	(2006.01)	
	ГИ ПОИСКА:			
Іроверенны	й минимум документации (система классифи	сации с индексами клас	ссификации):	
	еренная документация в той мере, в какой она 27/26, 27/00, H04N 15/00, 13/00, 13/04, G06T		е подборки:	
ермины):	база данных, использовавшаяся при поиске (sp@cenet, USPTO DB	название базы и, если,	возможно, исполя	зуемые поисковые
	ЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТН	ЫМИ:		Y
Категория*	Цитируемые документы с указанием, где это	возможно, релевантни	ых частей	Относится к пункту №
A	RU 2097940 C1 (АКЦИОНЕРНОЕ ОБЩЕС "РАКУРС-3Д") 27.11.1997, формула, ст левая кол., строка 48, стр. 9, левая кол., строка 5, стр. 12, левая кол., строка 25- фиг. 1, 2, 7	р. 7, правая кол., строк , строка 14 - стр. 9, пра	а 57 -стр. 8, вая кол.,	1-8
A	•	2 (САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ 1- ИТЕТ) 20.09.2005, реферат, формула, фиг. 1, 2		1-8
А	WO 2007/024118 A1 (MASTER IMAGE CO. пар. 36, 38-40, 45-46, фиг. 4, 5, 10, рефе			1-8
А	US 5969850 A (SHARP KABUSHIKI KAISH фиг. 4, 8	IA) 19.10.1999, формуз	а, реферат,	1-8
х последующ	ие документы указаны в продолжении графы С.	данные о п	атентах-аналогах ук	азаны в приложении
Особые катего	рии ссылочных документов:	Т более поздний д	окумент, опубликованн	ый после даты
•	пределяющий общий уровень техники и не считающийся		подачи или приоритета принципа или теории, на	-
особо релев Е более рання	аптным яя заявка или патент, но опубликованная на дату	основывается и		акоторых
•	одной подачи или после нее		щий наиболее близкое (отношение к предмету
. документ, г	юдвергающий сомнению притязание (я) на приоритет,	поиска; заявлени	юе изобретение не обла	дает новизной или
	й приводится с целью установления даты публикации	-	м уровнем, в сравнении	с документом, взятым
другого ссы	лочного документа, а также в других целях (как указано)	в отдельности У документ имею	щий наиболее близкое о	тношение к прелмети
) документ, о	тносящийся к устному раскрытию, использованию,	• ·		дает изобретательским
экспониров	анию и т.д.	уровнем, когда д	окумент взят в сочетан	ии с одним или несколь-
Р документ, опубликованный до даты международной подачи, но		кими документами той же категории, такая комбинация		
после даты	испрашиваемого приоритета		идна для специалиста	COM
Іата действи	тельного завершения международ-	Дата отправки настоя	щийся патентом-анало цего отчета о меж,	
ного поиска				
	27 июня 2008 (27.06.2008)		08 (24.07.2008)	
	ие и адрес ISA/RU	Уполномоч	енное лицо:	
ФГУ ФИП	С Москва, Г-59, ГСП-5, Бережковская наб.,		Г. Ревинский	
РФ,123995, 30,1 Факс:(499	242-3337	Tenedou M	(499) 240-25-91	

ОТЧЕТ О МЕЖДУНАРОДНОМ ПОИСКЕ

Международная заявка № PCT/RU 2008/000233

С. (продолжение) ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ:						
Категория*	Цитируемые документы с указанием, где это возможно, релевантных частей	Относится к пункту №				
Р, А	RU 2306680 C1 (ЕЖОВ ВАСИЛИЙ АЛЕКСАНДРОВИЧ) 20.09.2007, формула, реферат	. 1-8				

Форма PCT/ISA/210 (продолжение второго листа)(июль 2008)